metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.67D6, D6⋊C4⋊8C22, C22≀C2⋊10S3, C24⋊4S3⋊4C2, (C2×Dic3)⋊20D4, (D4×Dic3)⋊10C2, (C2×D4).148D6, C22⋊C4.44D6, C22.39(S3×D4), C6.53(C22×D4), C23.14D6⋊1C2, Dic3⋊4D4⋊1C2, (C2×C12).25C23, (C2×C6).130C24, Dic3⋊C4⋊6C22, C4⋊Dic3⋊23C22, Dic3.44(C2×D4), (C23×Dic3)⋊5C2, (C22×C6).7C23, C22⋊4(D4⋊2S3), C3⋊3(C22.19C24), (C4×Dic3)⋊12C22, (C2×Dic6)⋊18C22, (C6×D4).109C22, C23.16D6⋊1C2, C23.21D6⋊8C2, C23.23D6⋊2C2, (C23×C6).66C22, Dic3.D4⋊11C2, C6.D4⋊11C22, (C22×S3).52C23, C23.185(C22×S3), C22.151(S3×C23), (C2×Dic3).219C23, (C22×Dic3)⋊10C22, C2.26(C2×S3×D4), (S3×C2×C4)⋊4C22, (C2×C6)⋊9(C4○D4), C6.75(C2×C4○D4), (C2×C6).52(C2×D4), (C3×C22≀C2)⋊2C2, (C2×D4⋊2S3)⋊5C2, (C2×C3⋊D4)⋊6C22, C2.26(C2×D4⋊2S3), (C2×C4).25(C22×S3), (C3×C22⋊C4).1C22, SmallGroup(192,1145)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.67D6
G = < a,b,c,d,e,f | a2=b2=c2=d2=e6=1, f2=d, ab=ba, ac=ca, eae-1=faf-1=ad=da, ebe-1=fbf-1=bc=cb, bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >
Subgroups: 784 in 330 conjugacy classes, 111 normal (39 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, Dic3, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, Dic6, C4×S3, C2×Dic3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, C22×C6, C22×C6, C42⋊C2, C4×D4, C22≀C2, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C23×C4, C2×C4○D4, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C6.D4, C3×C22⋊C4, C3×C22⋊C4, C2×Dic6, S3×C2×C4, D4⋊2S3, C22×Dic3, C22×Dic3, C22×Dic3, C2×C3⋊D4, C2×C3⋊D4, C6×D4, C6×D4, C23×C6, C22.19C24, C23.16D6, Dic3.D4, Dic3⋊4D4, C23.21D6, D4×Dic3, C23.23D6, C23.14D6, C24⋊4S3, C3×C22≀C2, C2×D4⋊2S3, C23×Dic3, C24.67D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C24, C22×S3, C22×D4, C2×C4○D4, S3×D4, D4⋊2S3, S3×C23, C22.19C24, C2×S3×D4, C2×D4⋊2S3, C24.67D6
(1 7)(2 25)(3 9)(4 27)(5 11)(6 29)(8 20)(10 22)(12 24)(13 47)(14 33)(15 43)(16 35)(17 45)(18 31)(19 30)(21 26)(23 28)(32 42)(34 38)(36 40)(37 48)(39 44)(41 46)
(1 19)(2 25)(3 21)(4 27)(5 23)(6 29)(7 30)(8 20)(9 26)(10 22)(11 28)(12 24)(13 42)(14 33)(15 38)(16 35)(17 40)(18 31)(32 47)(34 43)(36 45)(37 48)(39 44)(41 46)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 47)(14 48)(15 43)(16 44)(17 45)(18 46)(19 30)(20 25)(21 26)(22 27)(23 28)(24 29)(31 41)(32 42)(33 37)(34 38)(35 39)(36 40)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 30)(8 25)(9 26)(10 27)(11 28)(12 29)(13 42)(14 37)(15 38)(16 39)(17 40)(18 41)(31 46)(32 47)(33 48)(34 43)(35 44)(36 45)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 46 19 31)(2 45 20 36)(3 44 21 35)(4 43 22 34)(5 48 23 33)(6 47 24 32)(7 18 30 41)(8 17 25 40)(9 16 26 39)(10 15 27 38)(11 14 28 37)(12 13 29 42)
G:=sub<Sym(48)| (1,7)(2,25)(3,9)(4,27)(5,11)(6,29)(8,20)(10,22)(12,24)(13,47)(14,33)(15,43)(16,35)(17,45)(18,31)(19,30)(21,26)(23,28)(32,42)(34,38)(36,40)(37,48)(39,44)(41,46), (1,19)(2,25)(3,21)(4,27)(5,23)(6,29)(7,30)(8,20)(9,26)(10,22)(11,28)(12,24)(13,42)(14,33)(15,38)(16,35)(17,40)(18,31)(32,47)(34,43)(36,45)(37,48)(39,44)(41,46), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,47)(14,48)(15,43)(16,44)(17,45)(18,46)(19,30)(20,25)(21,26)(22,27)(23,28)(24,29)(31,41)(32,42)(33,37)(34,38)(35,39)(36,40), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,30)(8,25)(9,26)(10,27)(11,28)(12,29)(13,42)(14,37)(15,38)(16,39)(17,40)(18,41)(31,46)(32,47)(33,48)(34,43)(35,44)(36,45), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,46,19,31)(2,45,20,36)(3,44,21,35)(4,43,22,34)(5,48,23,33)(6,47,24,32)(7,18,30,41)(8,17,25,40)(9,16,26,39)(10,15,27,38)(11,14,28,37)(12,13,29,42)>;
G:=Group( (1,7)(2,25)(3,9)(4,27)(5,11)(6,29)(8,20)(10,22)(12,24)(13,47)(14,33)(15,43)(16,35)(17,45)(18,31)(19,30)(21,26)(23,28)(32,42)(34,38)(36,40)(37,48)(39,44)(41,46), (1,19)(2,25)(3,21)(4,27)(5,23)(6,29)(7,30)(8,20)(9,26)(10,22)(11,28)(12,24)(13,42)(14,33)(15,38)(16,35)(17,40)(18,31)(32,47)(34,43)(36,45)(37,48)(39,44)(41,46), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,47)(14,48)(15,43)(16,44)(17,45)(18,46)(19,30)(20,25)(21,26)(22,27)(23,28)(24,29)(31,41)(32,42)(33,37)(34,38)(35,39)(36,40), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,30)(8,25)(9,26)(10,27)(11,28)(12,29)(13,42)(14,37)(15,38)(16,39)(17,40)(18,41)(31,46)(32,47)(33,48)(34,43)(35,44)(36,45), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,46,19,31)(2,45,20,36)(3,44,21,35)(4,43,22,34)(5,48,23,33)(6,47,24,32)(7,18,30,41)(8,17,25,40)(9,16,26,39)(10,15,27,38)(11,14,28,37)(12,13,29,42) );
G=PermutationGroup([[(1,7),(2,25),(3,9),(4,27),(5,11),(6,29),(8,20),(10,22),(12,24),(13,47),(14,33),(15,43),(16,35),(17,45),(18,31),(19,30),(21,26),(23,28),(32,42),(34,38),(36,40),(37,48),(39,44),(41,46)], [(1,19),(2,25),(3,21),(4,27),(5,23),(6,29),(7,30),(8,20),(9,26),(10,22),(11,28),(12,24),(13,42),(14,33),(15,38),(16,35),(17,40),(18,31),(32,47),(34,43),(36,45),(37,48),(39,44),(41,46)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,47),(14,48),(15,43),(16,44),(17,45),(18,46),(19,30),(20,25),(21,26),(22,27),(23,28),(24,29),(31,41),(32,42),(33,37),(34,38),(35,39),(36,40)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,30),(8,25),(9,26),(10,27),(11,28),(12,29),(13,42),(14,37),(15,38),(16,39),(17,40),(18,41),(31,46),(32,47),(33,48),(34,43),(35,44),(36,45)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,46,19,31),(2,45,20,36),(3,44,21,35),(4,43,22,34),(5,48,23,33),(6,47,24,32),(7,18,30,41),(8,17,25,40),(9,16,26,39),(10,15,27,38),(11,14,28,37),(12,13,29,42)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | ··· | 4M | 4N | 4O | 4P | 6A | 6B | 6C | 6D | ··· | 6I | 6J | 12A | 12B | 12C |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 12 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | ··· | 6 | 12 | 12 | 12 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | D6 | C4○D4 | S3×D4 | D4⋊2S3 |
kernel | C24.67D6 | C23.16D6 | Dic3.D4 | Dic3⋊4D4 | C23.21D6 | D4×Dic3 | C23.23D6 | C23.14D6 | C24⋊4S3 | C3×C22≀C2 | C2×D4⋊2S3 | C23×Dic3 | C22≀C2 | C2×Dic3 | C22⋊C4 | C2×D4 | C24 | C2×C6 | C22 | C22 |
# reps | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 4 | 3 | 3 | 1 | 8 | 2 | 4 |
Matrix representation of C24.67D6 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 12 |
0 | 8 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 7 |
0 | 0 | 0 | 0 | 10 | 10 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[0,8,0,0,0,0,8,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,3,10,0,0,0,0,7,10] >;
C24.67D6 in GAP, Magma, Sage, TeX
C_2^4._{67}D_6
% in TeX
G:=Group("C2^4.67D6");
// GroupNames label
G:=SmallGroup(192,1145);
// by ID
G=gap.SmallGroup(192,1145);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,570,185,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^6=1,f^2=d,a*b=b*a,a*c=c*a,e*a*e^-1=f*a*f^-1=a*d=d*a,e*b*e^-1=f*b*f^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations