Copied to
clipboard

G = C24.67D6order 192 = 26·3

14th non-split extension by C24 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.67D6, D6⋊C48C22, C22≀C210S3, C244S34C2, (C2×Dic3)⋊20D4, (D4×Dic3)⋊10C2, (C2×D4).148D6, C22⋊C4.44D6, C22.39(S3×D4), C6.53(C22×D4), C23.14D61C2, Dic34D41C2, (C2×C12).25C23, (C2×C6).130C24, Dic3⋊C46C22, C4⋊Dic323C22, Dic3.44(C2×D4), (C23×Dic3)⋊5C2, (C22×C6).7C23, C224(D42S3), C33(C22.19C24), (C4×Dic3)⋊12C22, (C2×Dic6)⋊18C22, (C6×D4).109C22, C23.16D61C2, C23.21D68C2, C23.23D62C2, (C23×C6).66C22, Dic3.D411C2, C6.D411C22, (C22×S3).52C23, C23.185(C22×S3), C22.151(S3×C23), (C2×Dic3).219C23, (C22×Dic3)⋊10C22, C2.26(C2×S3×D4), (S3×C2×C4)⋊4C22, (C2×C6)⋊9(C4○D4), C6.75(C2×C4○D4), (C2×C6).52(C2×D4), (C3×C22≀C2)⋊2C2, (C2×D42S3)⋊5C2, (C2×C3⋊D4)⋊6C22, C2.26(C2×D42S3), (C2×C4).25(C22×S3), (C3×C22⋊C4).1C22, SmallGroup(192,1145)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C24.67D6
C1C3C6C2×C6C2×Dic3C22×Dic3C23×Dic3 — C24.67D6
C3C2×C6 — C24.67D6
C1C22C22≀C2

Generators and relations for C24.67D6
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e6=1, f2=d, ab=ba, ac=ca, eae-1=faf-1=ad=da, ebe-1=fbf-1=bc=cb, bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >

Subgroups: 784 in 330 conjugacy classes, 111 normal (39 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, Dic3, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, Dic6, C4×S3, C2×Dic3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, C22×C6, C22×C6, C42⋊C2, C4×D4, C22≀C2, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C23×C4, C2×C4○D4, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C6.D4, C3×C22⋊C4, C3×C22⋊C4, C2×Dic6, S3×C2×C4, D42S3, C22×Dic3, C22×Dic3, C22×Dic3, C2×C3⋊D4, C2×C3⋊D4, C6×D4, C6×D4, C23×C6, C22.19C24, C23.16D6, Dic3.D4, Dic34D4, C23.21D6, D4×Dic3, C23.23D6, C23.14D6, C244S3, C3×C22≀C2, C2×D42S3, C23×Dic3, C24.67D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C24, C22×S3, C22×D4, C2×C4○D4, S3×D4, D42S3, S3×C23, C22.19C24, C2×S3×D4, C2×D42S3, C24.67D6

Smallest permutation representation of C24.67D6
On 48 points
Generators in S48
(1 7)(2 25)(3 9)(4 27)(5 11)(6 29)(8 20)(10 22)(12 24)(13 47)(14 33)(15 43)(16 35)(17 45)(18 31)(19 30)(21 26)(23 28)(32 42)(34 38)(36 40)(37 48)(39 44)(41 46)
(1 19)(2 25)(3 21)(4 27)(5 23)(6 29)(7 30)(8 20)(9 26)(10 22)(11 28)(12 24)(13 42)(14 33)(15 38)(16 35)(17 40)(18 31)(32 47)(34 43)(36 45)(37 48)(39 44)(41 46)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 47)(14 48)(15 43)(16 44)(17 45)(18 46)(19 30)(20 25)(21 26)(22 27)(23 28)(24 29)(31 41)(32 42)(33 37)(34 38)(35 39)(36 40)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 30)(8 25)(9 26)(10 27)(11 28)(12 29)(13 42)(14 37)(15 38)(16 39)(17 40)(18 41)(31 46)(32 47)(33 48)(34 43)(35 44)(36 45)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 46 19 31)(2 45 20 36)(3 44 21 35)(4 43 22 34)(5 48 23 33)(6 47 24 32)(7 18 30 41)(8 17 25 40)(9 16 26 39)(10 15 27 38)(11 14 28 37)(12 13 29 42)

G:=sub<Sym(48)| (1,7)(2,25)(3,9)(4,27)(5,11)(6,29)(8,20)(10,22)(12,24)(13,47)(14,33)(15,43)(16,35)(17,45)(18,31)(19,30)(21,26)(23,28)(32,42)(34,38)(36,40)(37,48)(39,44)(41,46), (1,19)(2,25)(3,21)(4,27)(5,23)(6,29)(7,30)(8,20)(9,26)(10,22)(11,28)(12,24)(13,42)(14,33)(15,38)(16,35)(17,40)(18,31)(32,47)(34,43)(36,45)(37,48)(39,44)(41,46), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,47)(14,48)(15,43)(16,44)(17,45)(18,46)(19,30)(20,25)(21,26)(22,27)(23,28)(24,29)(31,41)(32,42)(33,37)(34,38)(35,39)(36,40), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,30)(8,25)(9,26)(10,27)(11,28)(12,29)(13,42)(14,37)(15,38)(16,39)(17,40)(18,41)(31,46)(32,47)(33,48)(34,43)(35,44)(36,45), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,46,19,31)(2,45,20,36)(3,44,21,35)(4,43,22,34)(5,48,23,33)(6,47,24,32)(7,18,30,41)(8,17,25,40)(9,16,26,39)(10,15,27,38)(11,14,28,37)(12,13,29,42)>;

G:=Group( (1,7)(2,25)(3,9)(4,27)(5,11)(6,29)(8,20)(10,22)(12,24)(13,47)(14,33)(15,43)(16,35)(17,45)(18,31)(19,30)(21,26)(23,28)(32,42)(34,38)(36,40)(37,48)(39,44)(41,46), (1,19)(2,25)(3,21)(4,27)(5,23)(6,29)(7,30)(8,20)(9,26)(10,22)(11,28)(12,24)(13,42)(14,33)(15,38)(16,35)(17,40)(18,31)(32,47)(34,43)(36,45)(37,48)(39,44)(41,46), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,47)(14,48)(15,43)(16,44)(17,45)(18,46)(19,30)(20,25)(21,26)(22,27)(23,28)(24,29)(31,41)(32,42)(33,37)(34,38)(35,39)(36,40), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,30)(8,25)(9,26)(10,27)(11,28)(12,29)(13,42)(14,37)(15,38)(16,39)(17,40)(18,41)(31,46)(32,47)(33,48)(34,43)(35,44)(36,45), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,46,19,31)(2,45,20,36)(3,44,21,35)(4,43,22,34)(5,48,23,33)(6,47,24,32)(7,18,30,41)(8,17,25,40)(9,16,26,39)(10,15,27,38)(11,14,28,37)(12,13,29,42) );

G=PermutationGroup([[(1,7),(2,25),(3,9),(4,27),(5,11),(6,29),(8,20),(10,22),(12,24),(13,47),(14,33),(15,43),(16,35),(17,45),(18,31),(19,30),(21,26),(23,28),(32,42),(34,38),(36,40),(37,48),(39,44),(41,46)], [(1,19),(2,25),(3,21),(4,27),(5,23),(6,29),(7,30),(8,20),(9,26),(10,22),(11,28),(12,24),(13,42),(14,33),(15,38),(16,35),(17,40),(18,31),(32,47),(34,43),(36,45),(37,48),(39,44),(41,46)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,47),(14,48),(15,43),(16,44),(17,45),(18,46),(19,30),(20,25),(21,26),(22,27),(23,28),(24,29),(31,41),(32,42),(33,37),(34,38),(35,39),(36,40)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,30),(8,25),(9,26),(10,27),(11,28),(12,29),(13,42),(14,37),(15,38),(16,39),(17,40),(18,41),(31,46),(32,47),(33,48),(34,43),(35,44),(36,45)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,46,19,31),(2,45,20,36),(3,44,21,35),(4,43,22,34),(5,48,23,33),(6,47,24,32),(7,18,30,41),(8,17,25,40),(9,16,26,39),(10,15,27,38),(11,14,28,37),(12,13,29,42)]])

42 conjugacy classes

class 1 2A2B2C2D···2I2J2K 3 4A4B4C4D4E4F4G4H···4M4N4O4P6A6B6C6D···6I6J12A12B12C
order12222···222344444444···44446666···66121212
size11112···2412233334446···61212122224···48888

42 irreducible representations

dim11111111111122222244
type++++++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D4D6D6D6C4○D4S3×D4D42S3
kernelC24.67D6C23.16D6Dic3.D4Dic34D4C23.21D6D4×Dic3C23.23D6C23.14D6C244S3C3×C22≀C2C2×D42S3C23×Dic3C22≀C2C2×Dic3C22⋊C4C2×D4C24C2×C6C22C22
# reps11221212111114331824

Matrix representation of C24.67D6 in GL6(𝔽13)

100000
0120000
0012000
0001200
000010
000001
,
1200000
0120000
001000
0001200
000010
000001
,
100000
010000
0012000
0001200
000010
000001
,
1200000
0120000
001000
000100
000010
000001
,
010000
100000
000100
001000
0000012
0000112
,
080000
800000
000100
001000
000037
00001010

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[0,8,0,0,0,0,8,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,3,10,0,0,0,0,7,10] >;

C24.67D6 in GAP, Magma, Sage, TeX

C_2^4._{67}D_6
% in TeX

G:=Group("C2^4.67D6");
// GroupNames label

G:=SmallGroup(192,1145);
// by ID

G=gap.SmallGroup(192,1145);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,570,185,6278]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^6=1,f^2=d,a*b=b*a,a*c=c*a,e*a*e^-1=f*a*f^-1=a*d=d*a,e*b*e^-1=f*b*f^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽